Trigonometrie Beispiele

? 구하기 cos(x)=-sin(-x)
Schritt 1
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Da eine ungerade Funktion ist, schreibe als .
Schritt 1.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Mutltipliziere mit .
Schritt 1.1.2.2
Mutltipliziere mit .
Schritt 2
Teile jeden Term in der Gleichung durch .
Schritt 3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Faktor.
Schritt 3.2
Forme den Ausdruck um.
Schritt 4
Wandle von nach um.
Schritt 5
Schreibe die Gleichung als um.
Schritt 6
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 7
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Der genau Wert von ist .
Schritt 8
Die Tangensfunktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu finden, addiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu ermitteln.
Schritt 9
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 9.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Kombiniere und .
Schritt 9.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.3.1
Bringe auf die linke Seite von .
Schritt 9.3.2
Addiere und .
Schritt 10
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 10.2
Ersetze durch in der Formel für die Periode.
Schritt 10.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 10.4
Dividiere durch .
Schritt 11
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 12
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl