Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Benutze die Definition des Kosekans, um die bekannten Seiten des rechtwinkligen Dreiecks im Einheitskreis zu ermitteln. Der Quadrant bestimmt das Vorzeichen jedes der Werte.
Schritt 2
Berechne die Ankathete des Dreiecks im Einheitskreis. Da die Hypotenuse und die Gegenkathete bekannt sind, kannst du den Satz des Pythagoras anwenden, um die verbleibende Seite zu berechnen.
Schritt 3
Ersetze die bekannten Werte in der Gleichung.
Schritt 4
Schritt 4.1
Kehre das Vorzeichen von um.
Ankathete
Schritt 4.2
Potenziere mit .
Ankathete
Schritt 4.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Ankathete
Schritt 4.4
Mutltipliziere mit .
Ankathete
Schritt 4.5
Subtrahiere von .
Ankathete
Ankathete
Schritt 5
Schritt 5.1
Bestimme den Wert von mithilfe der Definition des Sinus.
Schritt 5.2
Setze die bekannten Werte ein.
Schritt 5.3
Dividiere durch .
Schritt 6
Schritt 6.1
Bestimme den Wert von mithilfe der Definition des Kosinus.
Schritt 6.2
Setze die bekannten Werte ein.
Schritt 6.3
Vereinfache den Wert von .
Schritt 6.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.3.2
Berechne die Wurzel.
Schritt 6.3.3
Dividiere durch .
Schritt 6.3.4
Mutltipliziere mit .
Schritt 7
Schritt 7.1
Benutze die Definition des Tangens, um den Wert von zu ermitteln.
Schritt 7.2
Setze die bekannten Werte ein.
Schritt 7.3
Vereinfache den Wert von .
Schritt 7.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 7.3.1.1
Schreibe als um.
Schritt 7.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.3.2
Mutltipliziere mit .
Schritt 7.3.3
Vereinige und vereinfache den Nenner.
Schritt 7.3.3.1
Mutltipliziere mit .
Schritt 7.3.3.2
Potenziere mit .
Schritt 7.3.3.3
Potenziere mit .
Schritt 7.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.3.3.5
Addiere und .
Schritt 7.3.3.6
Schreibe als um.
Schritt 7.3.3.6.1
Benutze , um als neu zu schreiben.
Schritt 7.3.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.3.3.6.3
Kombiniere und .
Schritt 7.3.3.6.4
Kürze den gemeinsamen Faktor von .
Schritt 7.3.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.3.6.4.2
Forme den Ausdruck um.
Schritt 7.3.3.6.5
Berechne den Exponenten.
Schritt 7.3.4
Berechne die Wurzel.
Schritt 7.3.5
Dividiere durch .
Schritt 7.3.6
Mutltipliziere mit .
Schritt 8
Schritt 8.1
Bestimme den Wert von mithilfe der Definition des Kotangens.
Schritt 8.2
Setze die bekannten Werte ein.
Schritt 8.3
Dividiere durch .
Schritt 9
Schritt 9.1
Bestimme den Wert von mithilfe der Definition des Sekans.
Schritt 9.2
Setze die bekannten Werte ein.
Schritt 9.3
Vereinfache den Wert von .
Schritt 9.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 9.3.2
Mutltipliziere mit .
Schritt 9.3.3
Vereinige und vereinfache den Nenner.
Schritt 9.3.3.1
Mutltipliziere mit .
Schritt 9.3.3.2
Potenziere mit .
Schritt 9.3.3.3
Potenziere mit .
Schritt 9.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.3.3.5
Addiere und .
Schritt 9.3.3.6
Schreibe als um.
Schritt 9.3.3.6.1
Benutze , um als neu zu schreiben.
Schritt 9.3.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.3.3.6.3
Kombiniere und .
Schritt 9.3.3.6.4
Kürze den gemeinsamen Faktor von .
Schritt 9.3.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 9.3.3.6.4.2
Forme den Ausdruck um.
Schritt 9.3.3.6.5
Berechne den Exponenten.
Schritt 9.3.4
Mutltipliziere mit .
Schritt 9.3.5
Vereinfache den Ausdruck.
Schritt 9.3.5.1
Dividiere durch .
Schritt 9.3.5.2
Mutltipliziere mit .
Schritt 10
Das ist die Lösung zu jedem trigonometrischen Wert.