Trigonometrie Beispiele

x 구하기 cot(x/2)=-1
Schritt 1
Wende den inversen Kotangens auf beide Seiten der Gleichung an, um aus dem Kotangens herauszuziehen.
Schritt 2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Der genau Wert von ist .
Schritt 3
Multipliziere beide Seiten der Gleichung mit .
Schritt 4
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.1.2
Forme den Ausdruck um.
Schritt 4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Faktorisiere aus heraus.
Schritt 4.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.3
Forme den Ausdruck um.
Schritt 5
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Schritt 6
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Addiere zu .
Schritt 6.2
Der resultierende Winkel von ist positiv und gleich .
Schritt 6.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 6.3.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.1.1.2
Forme den Ausdruck um.
Schritt 6.3.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.2.1.1
Faktorisiere aus heraus.
Schritt 6.3.2.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.2.1.3
Forme den Ausdruck um.
Schritt 7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.2
Ersetze durch in der Formel für die Periode.
Schritt 7.3
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 7.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 7.5
Bringe auf die linke Seite von .
Schritt 8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 9
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl