Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Teile jeden Term in der Gleichung durch .
Schritt 2
Separiere Brüche.
Schritt 3
Wandle von nach um.
Schritt 4
Dividiere durch .
Schritt 5
Schritt 5.1
Kürze den gemeinsamen Faktor.
Schritt 5.2
Forme den Ausdruck um.
Schritt 6
Schritt 6.1
Teile jeden Ausdruck in durch .
Schritt 6.2
Vereinfache die linke Seite.
Schritt 6.2.1
Kürze den gemeinsamen Faktor von .
Schritt 6.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.2
Dividiere durch .
Schritt 6.3
Vereinfache die rechte Seite.
Schritt 6.3.1
Mutltipliziere mit .
Schritt 6.3.2
Vereinige und vereinfache den Nenner.
Schritt 6.3.2.1
Mutltipliziere mit .
Schritt 6.3.2.2
Potenziere mit .
Schritt 6.3.2.3
Potenziere mit .
Schritt 6.3.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.3.2.5
Addiere und .
Schritt 6.3.2.6
Schreibe als um.
Schritt 6.3.2.6.1
Benutze , um als neu zu schreiben.
Schritt 6.3.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.3.2.6.3
Kombiniere und .
Schritt 6.3.2.6.4
Kürze den gemeinsamen Faktor von .
Schritt 6.3.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.6.4.2
Forme den Ausdruck um.
Schritt 6.3.2.6.5
Berechne den Exponenten.
Schritt 7
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 8
Schritt 8.1
Der genau Wert von ist .
Schritt 9
Die Tangensfunktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu finden, addiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu ermitteln.
Schritt 10
Schritt 10.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 10.2
Kombiniere Brüche.
Schritt 10.2.1
Kombiniere und .
Schritt 10.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 10.3
Vereinfache den Zähler.
Schritt 10.3.1
Bringe auf die linke Seite von .
Schritt 10.3.2
Addiere und .
Schritt 11
Schritt 11.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 11.2
Ersetze durch in der Formel für die Periode.
Schritt 11.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 11.4
Dividiere durch .
Schritt 12
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 13
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl