Trigonometrie Beispiele

? 구하기 2cos(x)=sec(x)
Schritt 1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Teile jeden Ausdruck in durch .
Schritt 1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.1.2
Forme den Ausdruck um.
Schritt 1.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.2
Forme den Ausdruck um.
Schritt 1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Separiere Brüche.
Schritt 1.3.2
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 1.3.3
Schreibe als ein Produkt um.
Schritt 1.3.4
Mutltipliziere mit .
Schritt 1.3.5
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.5.1
Potenziere mit .
Schritt 1.3.5.2
Potenziere mit .
Schritt 1.3.5.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.3.5.4
Addiere und .
Schritt 1.3.6
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.6.1
Kombinieren.
Schritt 1.3.6.2
Mutltipliziere mit .
Schritt 1.3.7
Multipliziere mit .
Schritt 1.3.8
Separiere Brüche.
Schritt 1.3.9
Wandle von nach um.
Schritt 1.3.10
Mutltipliziere mit .
Schritt 1.3.11
Kombiniere und .
Schritt 2
Schreibe die Gleichung als um.
Schritt 3
Multipliziere beide Seiten der Gleichung mit .
Schritt 4
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.1.2
Forme den Ausdruck um.
Schritt 4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Mutltipliziere mit .
Schritt 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 7
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 8
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Bilde den inversen Sekans von beiden Seiten der Gleichung, um aus dem Sekans zu ziehen.
Schritt 8.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Der genau Wert von ist .
Schritt 8.3
DIe Sekans-Funktion ist im ersten und vierten Quadranten positiv. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 8.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 8.4.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.4.2.1
Kombiniere und .
Schritt 8.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 8.4.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.4.3.1
Mutltipliziere mit .
Schritt 8.4.3.2
Subtrahiere von .
Schritt 8.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 8.5.2
Ersetze durch in der Formel für die Periode.
Schritt 8.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8.5.4
Dividiere durch .
Schritt 8.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 9
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Bilde den inversen Sekans von beiden Seiten der Gleichung, um aus dem Sekans zu ziehen.
Schritt 9.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Der genau Wert von ist .
Schritt 9.3
Die Sekans-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadraten zu ermitteln.
Schritt 9.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 9.4.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.4.2.1
Kombiniere und .
Schritt 9.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.4.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.4.3.1
Mutltipliziere mit .
Schritt 9.4.3.2
Subtrahiere von .
Schritt 9.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 9.5.2
Ersetze durch in der Formel für die Periode.
Schritt 9.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 9.5.4
Dividiere durch .
Schritt 9.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 10
Liste alle Lösungen auf.
, für jede ganze Zahl
Schritt 11
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl