Trigonometrie Beispiele

Wandle in Intervallschreibweise um arcsin(x)>pi/3
Schritt 1
Nimm den inversen Arcussinus von beiden Seiten der Gleichung, um aus dem Arcussinus zu ziehen.
Schritt 2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Der genau Wert von ist .
Schritt 3
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze das Argument in größer oder gleich , um zu ermitteln, wo der Ausdruck definiert ist.
Schritt 3.2
Setze das Argument in kleiner oder gleich , um zu ermitteln, wo der Ausdruck definiert ist.
Schritt 3.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 4
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 5
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.1.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 5.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.2.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 5.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 5.4
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.4.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.4.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 5.5
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Falsch
Wahr
Falsch
Falsch
Falsch
Wahr
Falsch
Schritt 6
Die Lösung besteht aus allen wahren Intervallen.
Schritt 7
Notiere die Ungleichung in Intervallschreibweise.
Schritt 8