Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Wende das Distributivgesetz an.
Schritt 2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Mutltipliziere mit .
Schritt 3.2
Potenziere mit .
Schritt 3.3
Potenziere mit .
Schritt 3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.5
Addiere und .
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.2
Mutltipliziere mit .
Schritt 5
Stelle und um.
Schritt 6
Das ist die trigonometrische Form einer komplexen Zahl, wobei der Betrag und der Winkel, der in der komplexen Ebene entsteht, ist.
Schritt 7
Der Betrag einer komplexen Zahl ist der Abstand vom Ursprung in der komplexen Zahlenebene.
, wobei
Schritt 8
Ersetze die tatsächlichen Werte von und .
Schritt 9
Schritt 9.1
Vereinfache den Ausdruck.
Schritt 9.1.1
Wende die Produktregel auf an.
Schritt 9.1.2
Potenziere mit .
Schritt 9.2
Schreibe als um.
Schritt 9.2.1
Benutze , um als neu zu schreiben.
Schritt 9.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.2.3
Kombiniere und .
Schritt 9.2.4
Kürze den gemeinsamen Faktor von .
Schritt 9.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 9.2.4.2
Forme den Ausdruck um.
Schritt 9.2.5
Berechne den Exponenten.
Schritt 9.3
Vereinfache den Ausdruck.
Schritt 9.3.1
Mutltipliziere mit .
Schritt 9.3.2
Potenziere mit .
Schritt 9.3.3
Addiere und .
Schritt 9.3.4
Schreibe als um.
Schritt 9.3.5
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 10
Der Winkel des Punkts in der komplexen Zahlenebene ist der inverse Tangens des Imaginärteils geteilt durch den Realteil.
Schritt 11
Da die Umkehrfunktion des Tangens von einen Winkel im ersten Quadranten ergibt, ist der Wert des Winkels .
Schritt 12
Substituiere die Werte von und .