Trigonometrie Beispiele

Stelle graphisch dar 4sin(2x-(2pi)/3)
Schritt 1
Wende die Form an, um die Variablen, die zur Ermittlung von Amplitude, Periode, Phasenverschiebung und vertikaler Verschiebung genutzt werden, zu bestimmen.
Schritt 2
Bestimme die Amplitude .
Amplitude:
Schritt 3
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.2
Ersetze durch in der Formel für die Periode.
Schritt 3.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2
Dividiere durch .
Schritt 4
Ermittle die Phasenverschiebung mithilfe der Formel .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Die Phasenverschiebung der Funktion kann mithilfe von berechnet werden.
Phasenverschiebung:
Schritt 4.2
Ersetze die Werte von und in der Gleichung für die Phasenverschiebung.
Phasenverschiebung:
Schritt 4.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Phasenverschiebung:
Schritt 4.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Faktorisiere aus heraus.
Phasenverschiebung:
Schritt 4.4.2
Kürze den gemeinsamen Faktor.
Phasenverschiebung:
Schritt 4.4.3
Forme den Ausdruck um.
Phasenverschiebung:
Phasenverschiebung:
Phasenverschiebung:
Schritt 5
Liste die Eigenschaften der trigonometrischen Funktion auf.
Amplitude:
Periode:
Phasenverschiebung: ( nach rechts)
Vertikale Verschiebung: Keine
Schritt 6
Wähle einige Punkte aus, um den Graphen zu zeichnen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1
Kombiniere und .
Schritt 6.1.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.1.2.3
Subtrahiere von .
Schritt 6.1.2.4
Dividiere durch .
Schritt 6.1.2.5
Der genau Wert von ist .
Schritt 6.1.2.6
Mutltipliziere mit .
Schritt 6.1.2.7
Die endgültige Lösung ist .
Schritt 6.2
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1.1
Faktorisiere aus heraus.
Schritt 6.2.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.1.3
Forme den Ausdruck um.
Schritt 6.2.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.3.1
Mutltipliziere mit .
Schritt 6.2.2.3.2
Mutltipliziere mit .
Schritt 6.2.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.2.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.5.1
Mutltipliziere mit .
Schritt 6.2.2.5.2
Subtrahiere von .
Schritt 6.2.2.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.6.1
Faktorisiere aus heraus.
Schritt 6.2.2.6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.6.2.3
Forme den Ausdruck um.
Schritt 6.2.2.7
Der genau Wert von ist .
Schritt 6.2.2.8
Mutltipliziere mit .
Schritt 6.2.2.9
Die endgültige Lösung ist .
Schritt 6.3
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.1
Faktorisiere aus heraus.
Schritt 6.3.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.1.3
Forme den Ausdruck um.
Schritt 6.3.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.3.2.3
Subtrahiere von .
Schritt 6.3.2.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.4.2
Dividiere durch .
Schritt 6.3.2.5
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 6.3.2.6
Der genau Wert von ist .
Schritt 6.3.2.7
Mutltipliziere mit .
Schritt 6.3.2.8
Die endgültige Lösung ist .
Schritt 6.4
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1.1
Faktorisiere aus heraus.
Schritt 6.4.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 6.4.2.1.3
Forme den Ausdruck um.
Schritt 6.4.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.4.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.3.1
Mutltipliziere mit .
Schritt 6.4.2.3.2
Mutltipliziere mit .
Schritt 6.4.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.4.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.5.1
Mutltipliziere mit .
Schritt 6.4.2.5.2
Subtrahiere von .
Schritt 6.4.2.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.6.1
Faktorisiere aus heraus.
Schritt 6.4.2.6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.6.2.1
Faktorisiere aus heraus.
Schritt 6.4.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.4.2.6.2.3
Forme den Ausdruck um.
Schritt 6.4.2.7
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im vierten Quadranten negativ ist.
Schritt 6.4.2.8
Der genau Wert von ist .
Schritt 6.4.2.9
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.9.1
Mutltipliziere mit .
Schritt 6.4.2.9.2
Mutltipliziere mit .
Schritt 6.4.2.10
Die endgültige Lösung ist .
Schritt 6.5
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.1.1
Kombiniere und .
Schritt 6.5.2.1.2
Mutltipliziere mit .
Schritt 6.5.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.5.2.3
Subtrahiere von .
Schritt 6.5.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.4.1
Faktorisiere aus heraus.
Schritt 6.5.2.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.4.2.1
Faktorisiere aus heraus.
Schritt 6.5.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.5.2.4.2.3
Forme den Ausdruck um.
Schritt 6.5.2.4.2.4
Dividiere durch .
Schritt 6.5.2.5
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 6.5.2.6
Der genau Wert von ist .
Schritt 6.5.2.7
Mutltipliziere mit .
Schritt 6.5.2.8
Die endgültige Lösung ist .
Schritt 6.6
Erfasse die Punkte in einer Tabelle.
Schritt 7
Die trigonometrische Funktion kann mithilfe der Amplitude, Periode, Phasenverschiebung, vertikalen Verschiebung und den Punkten graphisch dargestellt werden.
Amplitude:
Periode:
Phasenverschiebung: ( nach rechts)
Vertikale Verschiebung: Keine
Schritt 8