Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Teile den Winkel zunächst in zwei Winkel auf, für die die Werte der sechs trigonometrischen Funktionen bekannt sind. In diesem Fall kann in aufgeteilt werden.
Schritt 2
Benutze die Summenformel für den Tangens, um den Ausdruck zu vereinfachen. Die Formel besagt, dass .
Schritt 3
Schritt 3.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 3.2
Der genau Wert von ist .
Schritt 3.3
Der genau Wert von ist .
Schritt 4
Schritt 4.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 4.2
Der genau Wert von ist .
Schritt 4.3
Mutltipliziere mit .
Schritt 4.4
Der genau Wert von ist .
Schritt 4.5
Schreibe als um.
Schritt 5
Mutltipliziere mit .
Schritt 6
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Multipliziere den Nenner aus unter Verwendung der FOIL-Methode.
Schritt 6.3
Vereinfache.
Schritt 7
Schritt 7.1
Potenziere mit .
Schritt 7.2
Potenziere mit .
Schritt 7.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.4
Addiere und .
Schritt 8
Schreibe als um.
Schritt 9
Schritt 9.1
Wende das Distributivgesetz an.
Schritt 9.2
Wende das Distributivgesetz an.
Schritt 9.3
Wende das Distributivgesetz an.
Schritt 10
Schritt 10.1
Vereinfache jeden Term.
Schritt 10.1.1
Mutltipliziere mit .
Schritt 10.1.2
Mutltipliziere mit .
Schritt 10.1.3
Mutltipliziere mit .
Schritt 10.1.4
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 10.1.5
Mutltipliziere mit .
Schritt 10.1.6
Schreibe als um.
Schritt 10.1.7
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 10.2
Addiere und .
Schritt 10.3
Addiere und .
Schritt 11
Schritt 11.1
Faktorisiere aus heraus.
Schritt 11.2
Faktorisiere aus heraus.
Schritt 11.3
Faktorisiere aus heraus.
Schritt 11.4
Bringe die negative Eins aus dem Nenner von .
Schritt 12
Schreibe als um.
Schritt 13
Wende das Distributivgesetz an.
Schritt 14
Mutltipliziere mit .
Schritt 15
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: