Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.2
Wende das Distributivgesetz an.
Schritt 1.1.3
Wende das Distributivgesetz an.
Schritt 1.2
Vereinfache jeden Term.
Schritt 1.2.1
Bringe auf die linke Seite von .
Schritt 1.2.2
Schreibe als um.
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.2.4
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 2.1.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.1.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.2
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4
Schritt 4.1
Setze gleich .
Schritt 4.2
Löse nach auf.
Schritt 4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.2.2
Bilde den inversen Sekans von beiden Seiten der Gleichung, um aus dem Sekans zu ziehen.
Schritt 4.2.3
Vereinfache die rechte Seite.
Schritt 4.2.3.1
Der genau Wert von ist .
Schritt 4.2.4
DIe Sekans-Funktion ist im ersten und vierten Quadranten positiv. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 4.2.5
Subtrahiere von .
Schritt 4.2.6
Ermittele die Periode von .
Schritt 4.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 4.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 4.2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4.2.6.4
Dividiere durch .
Schritt 4.2.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 5
Schritt 5.1
Setze gleich .
Schritt 5.2
Löse nach auf.
Schritt 5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.2.2
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 5.2.3
Vereinfache die rechte Seite.
Schritt 5.2.3.1
Der genau Wert von ist .
Schritt 5.2.4
Die Tangensfunktion ist negativ im zweiten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 5.2.5
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Schritt 5.2.5.1
Addiere zu .
Schritt 5.2.5.2
Der resultierende Winkel von ist positiv und gleich .
Schritt 5.2.6
Ermittele die Periode von .
Schritt 5.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 5.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 5.2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.2.6.4
Dividiere durch .
Schritt 5.2.7
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Schritt 5.2.7.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 5.2.7.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.7.3
Kombiniere Brüche.
Schritt 5.2.7.3.1
Kombiniere und .
Schritt 5.2.7.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.7.4
Vereinfache den Zähler.
Schritt 5.2.7.4.1
Bringe auf die linke Seite von .
Schritt 5.2.7.4.2
Subtrahiere von .
Schritt 5.2.7.5
Liste die neuen Winkel auf.
Schritt 5.2.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 6
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede ganze Zahl
Schritt 7
Führe und zu zusammen.
, für jede ganze Zahl