Trigonometrie Beispiele

제II사분면에서의 다른 삼각함수 값 구하기 tan(x)=-8/15
Schritt 1
Benutze die Definition des Tangens, um die bekannten Seiten des rechtwinkligen Dreiecks im Einheitskreis zu ermitteln. Der Quadrant bestimmt das Vorzeichen jedes Wertes.
Schritt 2
Berechne die Hypotenuse des Dreiecks im Einheitskreis. Da die Gegenkathete und die Ankathete bekannt sind, kannst du den Satz des Pythagoras anwenden, um die verbleibende Seite zu berechnen.
Schritt 3
Ersetze die bekannten Werte in der Gleichung.
Schritt 4
Vereinfache den Ausdruck unter dem Wurzelzeichen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Potenziere mit .
Hypothenuse
Schritt 4.2
Potenziere mit .
Hypothenuse
Schritt 4.3
Addiere und .
Hypothenuse
Schritt 4.4
Schreibe als um.
Hypothenuse
Schritt 4.5
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Hypothenuse
Hypothenuse
Schritt 5
Ermittle den Wert des Sinus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Bestimme den Wert von mithilfe der Definition des Sinus.
Schritt 5.2
Setze die bekannten Werte ein.
Schritt 6
Berechne den Wert des Kosinus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Bestimme den Wert von mithilfe der Definition des Kosinus.
Schritt 6.2
Setze die bekannten Werte ein.
Schritt 6.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 7
Berechne den Wert des Kotangens.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Bestimme den Wert von mithilfe der Definition des Kotangens.
Schritt 7.2
Setze die bekannten Werte ein.
Schritt 7.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 8
Berechne den Wert des Sekans.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Bestimme den Wert von mithilfe der Definition des Sekans.
Schritt 8.2
Setze die bekannten Werte ein.
Schritt 8.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 9
Berechne den Wert des Kosekans.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Bestimme den Wert von mithilfe der Definition des Kosekans.
Schritt 9.2
Setze die bekannten Werte ein.
Schritt 10
Das ist die Lösung zu jedem trigonometrischen Wert.