Trigonometrie Beispiele

Vereinfache sin(pi/6)cos((2pi)/3)+cos(pi/6)sin((2pi)/3)
Schritt 1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Der genau Wert von ist .
Schritt 1.2
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 1.3
Der genau Wert von ist .
Schritt 1.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Mutltipliziere mit .
Schritt 1.4.2
Mutltipliziere mit .
Schritt 1.5
Der genau Wert von ist .
Schritt 1.6
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 1.7
Der genau Wert von ist .
Schritt 1.8
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.8.1
Mutltipliziere mit .
Schritt 1.8.2
Potenziere mit .
Schritt 1.8.3
Potenziere mit .
Schritt 1.8.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.8.5
Addiere und .
Schritt 1.8.6
Mutltipliziere mit .
Schritt 1.9
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.9.1
Benutze , um als neu zu schreiben.
Schritt 1.9.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.9.3
Kombiniere und .
Schritt 1.9.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.9.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.9.4.2
Forme den Ausdruck um.
Schritt 1.9.5
Berechne den Exponenten.
Schritt 2
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2
Addiere und .
Schritt 2.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Faktorisiere aus heraus.
Schritt 2.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Faktorisiere aus heraus.
Schritt 2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.3
Forme den Ausdruck um.
Schritt 3
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: