Trigonometrie Beispiele

x 구하기 2cos(x)+2sin(x) = square root of 6
Schritt 1
Quadriere beide Seiten der Gleichung.
Schritt 2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Schritt 2.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wende das Distributivgesetz an.
Schritt 2.2.2
Wende das Distributivgesetz an.
Schritt 2.2.3
Wende das Distributivgesetz an.
Schritt 2.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.1
Mutltipliziere mit .
Schritt 2.3.1.1.2
Potenziere mit .
Schritt 2.3.1.1.3
Potenziere mit .
Schritt 2.3.1.1.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.1.1.5
Addiere und .
Schritt 2.3.1.2
Füge Klammern hinzu.
Schritt 2.3.1.3
Stelle und um.
Schritt 2.3.1.4
Wende die Doppelwinkelfunktion für den Sinus an.
Schritt 2.3.1.5
Füge Klammern hinzu.
Schritt 2.3.1.6
Stelle und um.
Schritt 2.3.1.7
Wende die Doppelwinkelfunktion für den Sinus an.
Schritt 2.3.1.8
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.8.1
Mutltipliziere mit .
Schritt 2.3.1.8.2
Potenziere mit .
Schritt 2.3.1.8.3
Potenziere mit .
Schritt 2.3.1.8.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.1.8.5
Addiere und .
Schritt 2.3.2
Addiere und .
Schritt 2.4
Bewege .
Schritt 2.5
Faktorisiere aus heraus.
Schritt 2.6
Faktorisiere aus heraus.
Schritt 2.7
Faktorisiere aus heraus.
Schritt 2.8
Ordne Terme um.
Schritt 2.9
Wende den trigonometrischen Pythagoras an.
Schritt 2.10
Mutltipliziere mit .
Schritt 3
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Benutze , um als neu zu schreiben.
Schritt 3.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3
Kombiniere und .
Schritt 3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2
Forme den Ausdruck um.
Schritt 3.5
Berechne den Exponenten.
Schritt 4
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2
Subtrahiere von .
Schritt 5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1
Faktorisiere aus heraus.
Schritt 5.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.2.1
Faktorisiere aus heraus.
Schritt 5.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.1.2.3
Forme den Ausdruck um.
Schritt 6
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 7
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Der genau Wert von ist .
Schritt 8
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .
Schritt 8.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 8.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.2.1
Mutltipliziere mit .
Schritt 8.3.2.2
Mutltipliziere mit .
Schritt 9
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 10
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 10.1.2
Kombiniere und .
Schritt 10.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 10.1.4
Subtrahiere von .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.4.1
Stelle und um.
Schritt 10.1.4.2
Subtrahiere von .
Schritt 10.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Teile jeden Ausdruck in durch .
Schritt 10.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 10.2.2.1.2
Dividiere durch .
Schritt 10.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 10.2.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.3.2.1
Mutltipliziere mit .
Schritt 10.2.3.2.2
Mutltipliziere mit .
Schritt 11
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 11.2
Ersetze durch in der Formel für die Periode.
Schritt 11.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 11.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.4.1
Kürze den gemeinsamen Faktor.
Schritt 11.4.2
Dividiere durch .
Schritt 12
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 13
Schließe die Lösungen aus, die nicht erfüllen.
, für jede ganze Zahl