Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Das ist die trigonometrische Form einer komplexen Zahl, wobei der Betrag und der Winkel, der in der komplexen Ebene entsteht, ist.
Schritt 2
Der Betrag einer komplexen Zahl ist der Abstand vom Ursprung in der komplexen Zahlenebene.
, wobei
Schritt 3
Ersetze die tatsächlichen Werte von und .
Schritt 4
Schritt 4.1
Vereinfache den Ausdruck.
Schritt 4.1.1
Schreibe als um.
Schritt 4.1.2
Wende die Produktregel auf an.
Schritt 4.1.3
Potenziere mit .
Schritt 4.1.4
Mutltipliziere mit .
Schritt 4.2
Schreibe als um.
Schritt 4.2.1
Benutze , um als neu zu schreiben.
Schritt 4.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.3
Kombiniere und .
Schritt 4.2.4
Kürze den gemeinsamen Faktor von .
Schritt 4.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.4.2
Forme den Ausdruck um.
Schritt 4.2.5
Berechne den Exponenten.
Schritt 4.3
Vereinfache den Ausdruck.
Schritt 4.3.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.3.2
Addiere und .
Schritt 4.3.3
Schreibe als um.
Schritt 4.4
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5
Der Winkel des Punkts in der komplexen Zahlenebene ist der inverse Tangens des Imaginärteils geteilt durch den Realteil.
Schritt 6
Da die Umkehrfunktion des Tangens von einen Winkel im vierten Quadranten ergibt, ist der Wert des Winkels .
Schritt 7
Substituiere die Werte von und .