Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Addiere zu beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Mutltipliziere mit .
Schritt 2.3.2
Vereinige und vereinfache den Nenner.
Schritt 2.3.2.1
Mutltipliziere mit .
Schritt 2.3.2.2
Potenziere mit .
Schritt 2.3.2.3
Potenziere mit .
Schritt 2.3.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.2.5
Addiere und .
Schritt 2.3.2.6
Schreibe als um.
Schritt 2.3.2.6.1
Benutze , um als neu zu schreiben.
Schritt 2.3.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.2.6.3
Kombiniere und .
Schritt 2.3.2.6.4
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.6.4.2
Forme den Ausdruck um.
Schritt 2.3.2.6.5
Berechne den Exponenten.
Schritt 3
Wende den inversen Kotangens auf beide Seiten der Gleichung an, um aus dem Kotangens herauszuziehen.
Schritt 4
Schritt 4.1
Der genau Wert von ist .
Schritt 5
Die Kotangens-Funktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu ermitteln, addiere den Referenzwinkel aus , um die Lösung im vierten Quadranten zu bestimmen.
Schritt 6
Schritt 6.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2
Kombiniere Brüche.
Schritt 6.2.1
Kombiniere und .
Schritt 6.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.3
Vereinfache den Zähler.
Schritt 6.3.1
Bringe auf die linke Seite von .
Schritt 6.3.2
Addiere und .
Schritt 7
Schritt 7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.2
Ersetze durch in der Formel für die Periode.
Schritt 7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.4
Dividiere durch .
Schritt 8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 9
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl