Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schreibe die Gleichung als um.
Schritt 2
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Addiere und .
Schritt 3
Schritt 3.1
Teile jeden Ausdruck in durch .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2
Dividiere durch .
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 3.3.1.1
Faktorisiere aus heraus.
Schritt 3.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 3.3.1.2.1
Faktorisiere aus heraus.
Schritt 3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.2.3
Forme den Ausdruck um.
Schritt 4
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 5
Schritt 5.1
Der genau Wert von ist .
Schritt 6
Subtrahiere von beiden Seiten der Gleichung.
Schritt 7
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 8
Schritt 8.1
Vereinfache .
Schritt 8.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 8.1.2
Kombiniere Brüche.
Schritt 8.1.2.1
Kombiniere und .
Schritt 8.1.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 8.1.3
Vereinfache den Zähler.
Schritt 8.1.3.1
Mutltipliziere mit .
Schritt 8.1.3.2
Subtrahiere von .
Schritt 8.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 9
Schritt 9.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 9.2
Ersetze durch in der Formel für die Periode.
Schritt 9.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 9.4
Dividiere durch .
Schritt 10
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl