Trigonometrie Beispiele

Ermittle alle komplexen Lösungen z=3-4i
Schritt 1
Das ist die trigonometrische Form einer komplexen Zahl, wobei der Betrag und der Winkel, der in der komplexen Ebene entsteht, ist.
Schritt 2
Der Betrag einer komplexen Zahl ist der Abstand vom Ursprung in der komplexen Zahlenebene.
, wobei
Schritt 3
Ersetze die tatsächlichen Werte von und .
Schritt 4
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Potenziere mit .
Schritt 4.2
Potenziere mit .
Schritt 4.3
Addiere und .
Schritt 4.4
Schreibe als um.
Schritt 4.5
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5
Der Winkel des Punkts in der komplexen Zahlenebene ist der inverse Tangens des Imaginärteils geteilt durch den Realteil.
Schritt 6
Da die Umkehrfunktion des Tangens von einen Winkel im vierten Quadranten ergibt, ist der Wert des Winkels .
Schritt 7
Substituiere die Werte von und .
Schritt 8
Ersetze die rechte Seite der Gleichung durch die trigonometrische Form.