Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Bewege .
Schritt 2.2
Stelle und um.
Schritt 2.3
Faktorisiere aus heraus.
Schritt 2.4
Faktorisiere aus heraus.
Schritt 2.5
Faktorisiere aus heraus.
Schritt 2.6
Wende den trigonometrischen Pythagoras an.
Schritt 2.7
Subtrahiere von .
Schritt 3
Schritt 3.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.1.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2
Vereinfache die linke Seite.
Schritt 3.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.1.2
Dividiere durch .
Schritt 3.1.3
Vereinfache die rechte Seite.
Schritt 3.1.3.1
Dividiere durch .
Schritt 3.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.3
Vereinfache .
Schritt 3.3.1
Schreibe als um.
Schritt 3.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.3.3
Plus oder Minus ist .
Schritt 3.4
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 3.5
Vereinfache die rechte Seite.
Schritt 3.5.1
Der genau Wert von ist .
Schritt 3.6
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 3.7
Subtrahiere von .
Schritt 3.8
Ermittele die Periode von .
Schritt 3.8.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.8.2
Ersetze durch in der Formel für die Periode.
Schritt 3.8.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.8.4
Dividiere durch .
Schritt 3.9
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 4
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl