Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Wende den inversen Kosekans auf beide Seiten der Gleichung an, um aus dem Kosekans herauszuziehen.
Schritt 4
Schritt 4.1
Berechne .
Schritt 5
Die Kosekansfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere die Lösung von , um den Referenzwinkel zu finden. Addiere dann diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 6
Schritt 6.1
Subtrahiere von .
Schritt 6.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 7
Schritt 7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.2
Ersetze durch in der Formel für die Periode.
Schritt 7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.4
Dividiere durch .
Schritt 8
Schritt 8.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 8.2
Subtrahiere von .
Schritt 8.3
Liste die neuen Winkel auf.
Schritt 9
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede Ganzzahl