Trigonometrie Beispiele

Solve for x in Degrees 8sin(x)tan(x)-7tan(x)=0
Schritt 1
Vereinfache die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 1.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Kombiniere und .
Schritt 1.1.2.2
Kombiniere und .
Schritt 1.1.2.3
Potenziere mit .
Schritt 1.1.2.4
Potenziere mit .
Schritt 1.1.2.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.1.2.6
Addiere und .
Schritt 1.1.3
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 1.1.4
Kombiniere und .
Schritt 1.1.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Separiere Brüche.
Schritt 1.2.3
Wandle von nach um.
Schritt 1.2.4
Dividiere durch .
Schritt 1.2.5
Separiere Brüche.
Schritt 1.2.6
Wandle von nach um.
Schritt 1.2.7
Dividiere durch .
Schritt 1.2.8
Mutltipliziere mit .
Schritt 2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Faktorisiere aus heraus.
Schritt 2.2
Faktorisiere aus heraus.
Schritt 2.3
Faktorisiere aus heraus.
Schritt 3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Setze gleich .
Schritt 4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 4.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Der genau Wert von ist .
Schritt 4.2.3
Die Tangensfunktion ist positiv im ersten und dritten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 4.2.4
Addiere und .
Schritt 4.2.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 4.2.5.2
Ersetze durch in der Formel für die Periode.
Schritt 4.2.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4.2.5.4
Dividiere durch .
Schritt 4.2.6
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede Ganzzahl
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze gleich .
Schritt 5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.2.1.2
Dividiere durch .
Schritt 5.2.3
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 5.2.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Berechne .
Schritt 5.2.5
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 5.2.6
Subtrahiere von .
Schritt 5.2.7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 5.2.7.2
Ersetze durch in der Formel für die Periode.
Schritt 5.2.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.2.7.4
Dividiere durch .
Schritt 5.2.8
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede Ganzzahl
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 6
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede Ganzzahl
Schritt 7
Führe und zu zusammen.
, für jede Ganzzahl