Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Benutze die Umrechnungsformeln, um von Polarkoordinaten in kartesische Koordinaten umzurechnen.
Schritt 2
Setze die bekannten Werte von und in die Formeln ein.
Schritt 3
Schritt 3.1
Teile in zwei Winkel, für die die Werte der sechs trigonometrischen Funktionen bekannt sind.
Schritt 3.2
Separiere die Negation.
Schritt 3.3
Wende das Additionstheorem der Trigonometrie an.
Schritt 3.4
Der genau Wert von ist .
Schritt 3.5
Der genau Wert von ist .
Schritt 3.6
Der genau Wert von ist .
Schritt 3.7
Der genau Wert von ist .
Schritt 3.8
Vereinfache .
Schritt 3.8.1
Vereinfache jeden Term.
Schritt 3.8.1.1
Multipliziere .
Schritt 3.8.1.1.1
Mutltipliziere mit .
Schritt 3.8.1.1.2
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 3.8.1.1.3
Mutltipliziere mit .
Schritt 3.8.1.1.4
Mutltipliziere mit .
Schritt 3.8.1.2
Multipliziere .
Schritt 3.8.1.2.1
Mutltipliziere mit .
Schritt 3.8.1.2.2
Mutltipliziere mit .
Schritt 3.8.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Kürze den gemeinsamen Faktor.
Schritt 4.3
Forme den Ausdruck um.
Schritt 5
Wende das Distributivgesetz an.
Schritt 6
Schritt 6.1
Teile in zwei Winkel, für die die Werte der sechs trigonometrischen Funktionen bekannt sind.
Schritt 6.2
Separiere die Negation.
Schritt 6.3
Wende die Identitätsgleichung für Winkeldifferenzen an.
Schritt 6.4
Der genau Wert von ist .
Schritt 6.5
Der genau Wert von ist .
Schritt 6.6
Der genau Wert von ist .
Schritt 6.7
Der genau Wert von ist .
Schritt 6.8
Vereinfache .
Schritt 6.8.1
Vereinfache jeden Term.
Schritt 6.8.1.1
Multipliziere .
Schritt 6.8.1.1.1
Mutltipliziere mit .
Schritt 6.8.1.1.2
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 6.8.1.1.3
Mutltipliziere mit .
Schritt 6.8.1.1.4
Mutltipliziere mit .
Schritt 6.8.1.2
Multipliziere .
Schritt 6.8.1.2.1
Mutltipliziere mit .
Schritt 6.8.1.2.2
Mutltipliziere mit .
Schritt 6.8.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7
Schritt 7.1
Faktorisiere aus heraus.
Schritt 7.2
Kürze den gemeinsamen Faktor.
Schritt 7.3
Forme den Ausdruck um.
Schritt 8
Wende das Distributivgesetz an.
Schritt 9
Mutltipliziere mit .
Schritt 10
Die kartesische Darstellung des Punktes mit den Polarkoordinaten ist .