Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Es sei . Ersetze für alle .
Schritt 1.2
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 1.2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 1.2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 1.3
Ersetze alle durch .
Schritt 2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3
Schritt 3.1
Setze gleich .
Schritt 3.2
Löse nach auf.
Schritt 3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2.2
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 3.2.3
Vereinfache die rechte Seite.
Schritt 3.2.3.1
Berechne .
Schritt 3.2.4
Die Tangensfunktion ist negativ im zweiten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 3.2.5
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Schritt 3.2.5.1
Addiere zu .
Schritt 3.2.5.2
Der resultierende Winkel von ist positiv und gleich .
Schritt 3.2.6
Ermittele die Periode von .
Schritt 3.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 3.2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.2.6.4
Dividiere durch .
Schritt 3.2.7
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Schritt 3.2.7.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 3.2.7.2
Subtrahiere von .
Schritt 3.2.7.3
Liste die neuen Winkel auf.
Schritt 3.2.8
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede Ganzzahl
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 4
Schritt 4.1
Setze gleich .
Schritt 4.2
Löse nach auf.
Schritt 4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2.2
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 4.2.3
Vereinfache die rechte Seite.
Schritt 4.2.3.1
Berechne .
Schritt 4.2.4
Die Tangensfunktion ist negativ im zweiten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 4.2.5
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Schritt 4.2.5.1
Addiere zu .
Schritt 4.2.5.2
Der resultierende Winkel von ist positiv und gleich .
Schritt 4.2.6
Ermittele die Periode von .
Schritt 4.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 4.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 4.2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4.2.6.4
Dividiere durch .
Schritt 4.2.7
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Schritt 4.2.7.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 4.2.7.2
Subtrahiere von .
Schritt 4.2.7.3
Liste die neuen Winkel auf.
Schritt 4.2.8
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede Ganzzahl
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 5
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede Ganzzahl
Schritt 6
Führe und zu zusammen.
, für jede Ganzzahl