Trigonometrie Beispiele

Solve for x in Radians sin(2x+1.5)=-0.3
Schritt 1
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne .
Schritt 3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Subtrahiere von .
Schritt 4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Teile jeden Ausdruck in durch .
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Dividiere durch .
Schritt 4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Dividiere durch .
Schritt 5
Die Sinusfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere die Lösung von , um einen Referenzwinkel zu ermitteln. Addiere als nächstes diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 6
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Subtrahiere von .
Schritt 6.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 6.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.3.1.2
Subtrahiere von .
Schritt 6.3.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Teile jeden Ausdruck in durch .
Schritt 6.3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.2.1.2
Dividiere durch .
Schritt 6.3.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.3.1
Dividiere durch .
Schritt 7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.2
Ersetze durch in der Formel für die Periode.
Schritt 7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.4.2
Dividiere durch .
Schritt 8
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 8.2
Ersetze durch dezimale Näherung.
Schritt 8.3
Subtrahiere von .
Schritt 8.4
Liste die neuen Winkel auf.
Schritt 9
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl