Trigonometrie Beispiele

Ermittle trigonometrische Funktionswerte unter Anwendung der Identitätsgleichungen tan(theta)=-3/5 , sin(theta)<0
,
Schritt 1
The sine function is negative in the third and fourth quadrants. The tangent function is negative in the second and fourth quadrants. The set of solutions for are limited to the fourth quadrant since that is the only quadrant found in both sets.
Die Lösung liegt im vierten Quadranten.
Schritt 2
Benutze die Definition des Tangens, um die bekannten Seiten des rechtwinkligen Dreiecks im Einheitskreis zu ermitteln. Der Quadrant bestimmt das Vorzeichen jedes Wertes.
Schritt 3
Berechne die Hypotenuse des Dreiecks im Einheitskreis. Da die Gegenkathete und die Ankathete bekannt sind, kannst du den Satz des Pythagoras anwenden, um die verbleibende Seite zu berechnen.
Schritt 4
Ersetze die bekannten Werte in der Gleichung.
Schritt 5
Vereinfache den Ausdruck unter dem Wurzelzeichen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Potenziere mit .
Hypothenuse
Schritt 5.2
Potenziere mit .
Hypothenuse
Schritt 5.3
Addiere und .
Hypothenuse
Hypothenuse
Schritt 6
Ermittle den Wert des Sinus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Bestimme den Wert von mithilfe der Definition des Sinus.
Schritt 6.2
Setze die bekannten Werte ein.
Schritt 6.3
Vereinfache den Wert von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.3.2
Mutltipliziere mit .
Schritt 6.3.3
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.1
Mutltipliziere mit .
Schritt 6.3.3.2
Potenziere mit .
Schritt 6.3.3.3
Potenziere mit .
Schritt 6.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.3.3.5
Addiere und .
Schritt 6.3.3.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.6.1
Benutze , um als neu zu schreiben.
Schritt 6.3.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.3.3.6.3
Kombiniere und .
Schritt 6.3.3.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.3.6.4.2
Forme den Ausdruck um.
Schritt 6.3.3.6.5
Berechne den Exponenten.
Schritt 7
Berechne den Wert des Kosinus.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Bestimme den Wert von mithilfe der Definition des Kosinus.
Schritt 7.2
Setze die bekannten Werte ein.
Schritt 7.3
Vereinfache den Wert von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Mutltipliziere mit .
Schritt 7.3.2
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1
Mutltipliziere mit .
Schritt 7.3.2.2
Potenziere mit .
Schritt 7.3.2.3
Potenziere mit .
Schritt 7.3.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.3.2.5
Addiere und .
Schritt 7.3.2.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.6.1
Benutze , um als neu zu schreiben.
Schritt 7.3.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.3.2.6.3
Kombiniere und .
Schritt 7.3.2.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.2.6.4.2
Forme den Ausdruck um.
Schritt 7.3.2.6.5
Berechne den Exponenten.
Schritt 8
Berechne den Wert des Kotangens.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Bestimme den Wert von mithilfe der Definition des Kotangens.
Schritt 8.2
Setze die bekannten Werte ein.
Schritt 8.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 9
Berechne den Wert des Sekans.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Bestimme den Wert von mithilfe der Definition des Sekans.
Schritt 9.2
Setze die bekannten Werte ein.
Schritt 10
Berechne den Wert des Kosekans.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Bestimme den Wert von mithilfe der Definition des Kosekans.
Schritt 10.2
Setze die bekannten Werte ein.
Schritt 10.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 11
Das ist die Lösung zu jedem trigonometrischen Wert.