Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Addiere zu beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Mutltipliziere mit .
Schritt 2.3.2
Vereinige und vereinfache den Nenner.
Schritt 2.3.2.1
Mutltipliziere mit .
Schritt 2.3.2.2
Potenziere mit .
Schritt 2.3.2.3
Potenziere mit .
Schritt 2.3.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.2.5
Addiere und .
Schritt 2.3.2.6
Schreibe als um.
Schritt 2.3.2.6.1
Benutze , um als neu zu schreiben.
Schritt 2.3.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.2.6.3
Kombiniere und .
Schritt 2.3.2.6.4
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.6.4.2
Forme den Ausdruck um.
Schritt 2.3.2.6.5
Berechne den Exponenten.
Schritt 3
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 4
Schritt 4.1
Der genau Wert von ist .
Schritt 5
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 6
Subtrahiere von .
Schritt 7
Schritt 7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.2
Ersetze durch in der Formel für die Periode.
Schritt 7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.4
Dividiere durch .
Schritt 8
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede Ganzzahl