Trigonometrie Beispiele

Ermittle trigonometrische Funktionswerte unter Anwendung der Identitätsgleichungen sec(theta)=- Quadratwurzel von 10 , cot(theta)>0
,
Schritt 1
The cotangent function is positive in the first and third quadrants. The secant function is negative in the second and third quadrants. The set of solutions for are limited to the third quadrant since that is the only quadrant found in both sets.
Die Lösung liegt im dritten Quadranten.
Schritt 2
Benutze die Definition des Sekans, um die bekannten Seiten des rechtwinkligen Dreiecks im Einheitskreis zu ermitteln. Der Quadrant bestimmt das Vorzeichen jedes Wertes.
Schritt 3
Berechne die Gegenkathete des Dreiecks im Einheitskreis. Da die Ankathete und die Hypotenuse bekannt sind, kannst du den Satz des Pythagoras anwenden, um die verbleibende Seite zu berechnen.
Schritt 4
Ersetze die bekannten Werte in der Gleichung.
Schritt 5
Vereinfache den Ausdruck unter dem Wurzelzeichen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kehre das Vorzeichen von um.
Gegenkathete
Schritt 5.2
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Benutze , um als neu zu schreiben.
Gegenkathete
Schritt 5.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Gegenkathete
Schritt 5.2.3
Kombiniere und .
Gegenkathete
Schritt 5.2.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Kürze den gemeinsamen Faktor.
Gegenkathete
Schritt 5.2.4.2
Forme den Ausdruck um.
Gegenkathete
Gegenkathete
Schritt 5.2.5
Berechne den Exponenten.
Gegenkathete
Gegenkathete
Schritt 5.3
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1
Potenziere mit .
Gegenkathete
Schritt 5.3.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Gegenkathete
Gegenkathete
Schritt 5.3.2
Addiere und .
Gegenkathete
Gegenkathete
Schritt 5.4
Potenziere mit .
Gegenkathete
Schritt 5.5
Subtrahiere von .
Gegenkathete
Schritt 5.6
Schreibe als um.
Gegenkathete
Schritt 5.7
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Gegenkathete
Schritt 5.8
Mutltipliziere mit .
Gegenkathete
Gegenkathete
Schritt 6
Ermittle den Wert des Sinus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Bestimme den Wert von mithilfe der Definition des Sinus.
Schritt 6.2
Setze die bekannten Werte ein.
Schritt 6.3
Vereinfache den Wert von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.3.2
Mutltipliziere mit .
Schritt 6.3.3
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.1
Mutltipliziere mit .
Schritt 6.3.3.2
Potenziere mit .
Schritt 6.3.3.3
Potenziere mit .
Schritt 6.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.3.3.5
Addiere und .
Schritt 6.3.3.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.6.1
Benutze , um als neu zu schreiben.
Schritt 6.3.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.3.3.6.3
Kombiniere und .
Schritt 6.3.3.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.3.6.4.2
Forme den Ausdruck um.
Schritt 6.3.3.6.5
Berechne den Exponenten.
Schritt 7
Berechne den Wert des Kosinus.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Bestimme den Wert von mithilfe der Definition des Kosinus.
Schritt 7.2
Setze die bekannten Werte ein.
Schritt 7.3
Vereinfache den Wert von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.3.2
Mutltipliziere mit .
Schritt 7.3.3
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.1
Mutltipliziere mit .
Schritt 7.3.3.2
Potenziere mit .
Schritt 7.3.3.3
Potenziere mit .
Schritt 7.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.3.3.5
Addiere und .
Schritt 7.3.3.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.6.1
Benutze , um als neu zu schreiben.
Schritt 7.3.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.3.3.6.3
Kombiniere und .
Schritt 7.3.3.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.3.6.4.2
Forme den Ausdruck um.
Schritt 7.3.3.6.5
Berechne den Exponenten.
Schritt 8
Bestimme den Wert des Tangens.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Benutze die Definition des Tangens, um den Wert von zu ermitteln.
Schritt 8.2
Setze die bekannten Werte ein.
Schritt 8.3
Dividiere durch .
Schritt 9
Berechne den Wert des Kotangens.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Bestimme den Wert von mithilfe der Definition des Kotangens.
Schritt 9.2
Setze die bekannten Werte ein.
Schritt 9.3
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 10
Berechne den Wert des Kosekans.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Bestimme den Wert von mithilfe der Definition des Kosekans.
Schritt 10.2
Setze die bekannten Werte ein.
Schritt 10.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 11
Das ist die Lösung zu jedem trigonometrischen Wert.