Trigonometrie Beispiele

Solve for x in Degrees tan(x)=1/( Quadratwurzel von 3)
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Mutltipliziere mit .
Schritt 1.2
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Mutltipliziere mit .
Schritt 1.2.2
Potenziere mit .
Schritt 1.2.3
Potenziere mit .
Schritt 1.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.2.5
Addiere und .
Schritt 1.2.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Benutze , um als neu zu schreiben.
Schritt 1.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.6.3
Kombiniere und .
Schritt 1.2.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.6.4.2
Forme den Ausdruck um.
Schritt 1.2.6.5
Berechne den Exponenten.
Schritt 2
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Der genau Wert von ist .
Schritt 4
Die Tangensfunktion ist positiv im ersten und dritten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 5
Addiere und .
Schritt 6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 6.2
Ersetze durch in der Formel für die Periode.
Schritt 6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.4
Dividiere durch .
Schritt 7
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede Ganzzahl
Schritt 8
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl