Trigonometrie Beispiele

Solve for x in Degrees 2sin(4x)+6=5
Schritt 1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Subtrahiere von .
Schritt 2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Der genau Wert von ist .
Schritt 5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.1
Faktorisiere aus heraus.
Schritt 5.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1.2.1
Faktorisiere aus heraus.
Schritt 5.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.1.2.3
Forme den Ausdruck um.
Schritt 5.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Die Sinusfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere die Lösung von , um einen Referenzwinkel zu ermitteln. Addiere als nächstes diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 7
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Subtrahiere von .
Schritt 7.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 7.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Teile jeden Ausdruck in durch .
Schritt 7.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.2.1.2
Dividiere durch .
Schritt 7.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.1.1
Faktorisiere aus heraus.
Schritt 7.3.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 7.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.3.3.1.2.3
Forme den Ausdruck um.
Schritt 8
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 8.2
Ersetze durch in der Formel für die Periode.
Schritt 8.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8.4
Dividiere durch .
Schritt 9
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 9.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 9.3
Kombiniere und .
Schritt 9.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.5.1
Mutltipliziere mit .
Schritt 9.5.2
Subtrahiere von .
Schritt 9.6
Liste die neuen Winkel auf.
Schritt 10
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede Ganzzahl