Gib eine Aufgabe ein ...
Trigonometrie Beispiele
Schritt 1
Schritt 1.1
Mutltipliziere mit .
Schritt 1.2
Vereinige und vereinfache den Nenner.
Schritt 1.2.1
Mutltipliziere mit .
Schritt 1.2.2
Potenziere mit .
Schritt 1.2.3
Potenziere mit .
Schritt 1.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.2.5
Addiere und .
Schritt 1.2.6
Schreibe als um.
Schritt 1.2.6.1
Benutze , um als neu zu schreiben.
Schritt 1.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.6.3
Kombiniere und .
Schritt 1.2.6.4
Kürze den gemeinsamen Faktor von .
Schritt 1.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.6.4.2
Forme den Ausdruck um.
Schritt 1.2.6.5
Berechne den Exponenten.
Schritt 2
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 3
Schritt 3.1
Der genau Wert von ist .
Schritt 4
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 5
Subtrahiere von .
Schritt 6
Schritt 6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 6.2
Ersetze durch in der Formel für die Periode.
Schritt 6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.4
Dividiere durch .
Schritt 7
Die Periode der -Funktion ist , sodass sich die Werte alle Grad in beide Richtungen wiederholen werden.
, für jede Ganzzahl