Elementarmathematik Beispiele

Ermittle die Umkehrfunktion e^x+2
Schritt 1
Vertausche die Variablen.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 2.4
Multipliziere die linke Seite aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 2.4.2
Der natürliche Logarithmus von ist .
Schritt 2.4.3
Mutltipliziere mit .
Schritt 3
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 4
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Subtrahiere von .
Schritt 4.2.3.2
Addiere und .
Schritt 4.2.4
Benutze die Rechenregeln für Logarithmen, um aus dem Exponenten zu ziehen.
Schritt 4.2.5
Der natürliche Logarithmus von ist .
Schritt 4.2.6
Mutltipliziere mit .
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 4.3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Addiere und .
Schritt 4.3.4.2
Addiere und .
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .