Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Das Pascalsche Dreieck kann als solches dargestellt werden:
Das Dreieck kann dazu genutzt werden, die Koeffizienten für das Ausmultiplizieren von zu berechnen durch Addition von zum Exponenten . Die Koeffizienten finden sich in der Zeile des Dreiecks. Für gilt , folglich finden sich die Koeffizienten des ausmultiplizierten Binoms in Zeile .
Schritt 2
Das Ausmultiplizieren folgt der Regel . Die Werte der Koeffizienten gemäß dem Dreieck sind .
Schritt 3
Setze die tatsächlichen Werte von und in den Ausdruck ein.
Schritt 4
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Wende die Produktregel auf an.
Schritt 4.3
Potenziere mit .
Schritt 4.4
Wende die Produktregel auf an.
Schritt 4.5
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.6
Alles, was mit potenziert wird, ist .
Schritt 4.7
Mutltipliziere mit .
Schritt 4.8
Alles, was mit potenziert wird, ist .
Schritt 4.9
Mutltipliziere mit .
Schritt 4.10
Wende die Produktregel auf an.
Schritt 4.11
Potenziere mit .
Schritt 4.12
Mutltipliziere mit .
Schritt 4.13
Vereinfache.
Schritt 4.14
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.15
Mutltipliziere mit .
Schritt 4.16
Wende die Produktregel auf an.
Schritt 4.17
Potenziere mit .
Schritt 4.18
Mutltipliziere mit .
Schritt 4.19
Wende die Produktregel auf an.
Schritt 4.20
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.21
Potenziere mit .
Schritt 4.22
Mutltipliziere mit .
Schritt 4.23
Wende die Produktregel auf an.
Schritt 4.24
Potenziere mit .
Schritt 4.25
Mutltipliziere mit .
Schritt 4.26
Wende die Produktregel auf an.
Schritt 4.27
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.28
Potenziere mit .
Schritt 4.29
Mutltipliziere mit .
Schritt 4.30
Wende die Produktregel auf an.
Schritt 4.31
Potenziere mit .
Schritt 4.32
Mutltipliziere mit .
Schritt 4.33
Wende die Produktregel auf an.
Schritt 4.34
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.35
Potenziere mit .
Schritt 4.36
Mutltipliziere mit .
Schritt 4.37
Wende die Produktregel auf an.
Schritt 4.38
Potenziere mit .
Schritt 4.39
Mutltipliziere mit .
Schritt 4.40
Wende die Produktregel auf an.
Schritt 4.41
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.42
Potenziere mit .
Schritt 4.43
Mutltipliziere mit .
Schritt 4.44
Wende die Produktregel auf an.
Schritt 4.45
Potenziere mit .
Schritt 4.46
Mutltipliziere mit .
Schritt 4.47
Wende die Produktregel auf an.
Schritt 4.48
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.49
Potenziere mit .
Schritt 4.50
Mutltipliziere mit .
Schritt 4.51
Wende die Produktregel auf an.
Schritt 4.52
Potenziere mit .
Schritt 4.53
Mutltipliziere mit .
Schritt 4.54
Wende die Produktregel auf an.
Schritt 4.55
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.56
Potenziere mit .
Schritt 4.57
Mutltipliziere mit .
Schritt 4.58
Wende die Produktregel auf an.
Schritt 4.59
Potenziere mit .
Schritt 4.60
Mutltipliziere mit .
Schritt 4.61
Wende die Produktregel auf an.
Schritt 4.62
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.63
Potenziere mit .
Schritt 4.64
Mutltipliziere mit .
Schritt 4.65
Wende die Produktregel auf an.
Schritt 4.66
Potenziere mit .
Schritt 4.67
Mutltipliziere mit .
Schritt 4.68
Wende die Produktregel auf an.
Schritt 4.69
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.70
Potenziere mit .
Schritt 4.71
Mutltipliziere mit .
Schritt 4.72
Vereinfache.
Schritt 4.73
Mutltipliziere mit .
Schritt 4.74
Wende die Produktregel auf an.
Schritt 4.75
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.76
Potenziere mit .
Schritt 4.77
Mutltipliziere mit .
Schritt 4.78
Mutltipliziere mit .
Schritt 4.79
Wende die Produktregel auf an.
Schritt 4.80
Alles, was mit potenziert wird, ist .
Schritt 4.81
Mutltipliziere mit .
Schritt 4.82
Alles, was mit potenziert wird, ist .
Schritt 4.83
Mutltipliziere mit .
Schritt 4.84
Wende die Produktregel auf an.
Schritt 4.85
Potenziere mit .