Elementarmathematik Beispiele

Bestimme den Definitionsbereich C(t)=t/(3t^2+1)
Schritt 1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.2
Dividiere durch .
Schritt 2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1.1
Schreibe als um.
Schritt 2.4.1.2
Schreibe als um.
Schritt 2.4.2
Ziehe Terme aus der Wurzel heraus.
Schritt 2.4.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.4.4
Schreibe als um.
Schritt 2.4.5
Jede Wurzel von ist .
Schritt 2.4.6
Mutltipliziere mit .
Schritt 2.4.7
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.7.1
Mutltipliziere mit .
Schritt 2.4.7.2
Potenziere mit .
Schritt 2.4.7.3
Potenziere mit .
Schritt 2.4.7.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.4.7.5
Addiere und .
Schritt 2.4.7.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.7.6.1
Benutze , um als neu zu schreiben.
Schritt 2.4.7.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.4.7.6.3
Kombiniere und .
Schritt 2.4.7.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.7.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.7.6.4.2
Forme den Ausdruck um.
Schritt 2.4.7.6.5
Berechne den Exponenten.
Schritt 2.4.8
Kombiniere und .
Schritt 2.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Der Definitionsbereich umfasst alle reellen Zahlen.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4