Elementarmathematik Beispiele

Überprüfe die Identitätsgleichung (sin(x))/(1-cos(x))-1/(sin(x))=cot(x)
Schritt 1
Beginne auf der linken Seite.
Schritt 2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Mutltipliziere mit .
Schritt 2.3.2
Mutltipliziere mit .
Schritt 2.3.3
Stelle die Faktoren von um.
Schritt 2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.1
Potenziere mit .
Schritt 2.5.1.2
Potenziere mit .
Schritt 2.5.1.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.5.1.4
Addiere und .
Schritt 2.5.2
Wende das Distributivgesetz an.
Schritt 2.5.3
Mutltipliziere mit .
Schritt 2.5.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.4.1
Mutltipliziere mit .
Schritt 2.5.4.2
Mutltipliziere mit .
Schritt 2.5.5
Stelle und um.
Schritt 2.5.6
Schreibe als um.
Schritt 2.5.7
Faktorisiere aus heraus.
Schritt 2.5.8
Faktorisiere aus heraus.
Schritt 2.5.9
Schreibe als um.
Schritt 2.5.10
Wende den trigonometrischen Pythagoras an.
Schritt 2.5.11
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.11.1
Faktorisiere aus heraus.
Schritt 2.5.11.2
Multipliziere mit .
Schritt 2.5.11.3
Faktorisiere aus heraus.
Schritt 2.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Stelle die Terme um.
Schritt 2.6.2
Kürze den gemeinsamen Faktor.
Schritt 2.6.3
Forme den Ausdruck um.
Schritt 3
Schreibe als um.
Schritt 4
Da gezeigt wurde, dass die beiden Seiten äquivalent sind, ist die Gleichung eine Identitätsgleichung.
ist eine Identitätsgleichung