Elementarmathematik Beispiele

x 구하기 (e^x+36e^(-x))/2=6
Schritt 1
Multipliziere beide Seiten mit .
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.1.2
Forme den Ausdruck um.
Schritt 2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Mutltipliziere mit .
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe als Potenz um.
Schritt 3.2
Ersetze durch .
Schritt 3.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 3.3.2
Kombiniere und .
Schritt 3.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.4.1.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3.4.2
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Multipliziere jeden Term in mit .
Schritt 3.4.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.2.1.1
Mutltipliziere mit .
Schritt 3.4.2.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.2.1.2.2
Forme den Ausdruck um.
Schritt 3.4.3
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4.3.2
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.2.1
Ordne Terme um.
Schritt 3.4.3.2.2
Schreibe als um.
Schritt 3.4.3.2.3
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 3.4.3.2.4
Schreibe das Polynom neu.
Schritt 3.4.3.2.5
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 3.4.3.3
Setze gleich .
Schritt 3.4.3.4
Addiere zu beiden Seiten der Gleichung.
Schritt 3.5
Setze für in ein.
Schritt 3.6
Löse .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Schreibe die Gleichung als um.
Schritt 3.6.2
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3.6.3
Multipliziere die linke Seite aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.3.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 3.6.3.2
Der natürliche Logarithmus von ist .
Schritt 3.6.3.3
Mutltipliziere mit .
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: