Elementarmathematik Beispiele

y 구하기 2/(y+2)+3/y=-y/(y+2)
Schritt 1
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
Schritte, um das kgV für zu finden, sind:
1. Finde das kgV für den numerischen Teil .
2. Finde das kgV für den variablen Teil .
Finde das kgV für den zusammengesetzten variablen Teil .
4. Multipliziere jedes kgV miteinander.
Schritt 1.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.5
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 1.6
Der Teiler von ist selbst.
occurs time.
Schritt 1.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 1.8
Der Teiler von ist selbst.
occurs time.
Schritt 1.9
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 1.10
Das kleinste gemeinsame Vielfache einer Reihe von Zahlen ist die kleinste Zahl, von der die Zahlen Teiler sind.
Schritt 2
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Multipliziere jeden Term in mit .
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.1.3
Forme den Ausdruck um.
Schritt 2.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2.2
Forme den Ausdruck um.
Schritt 2.2.1.3
Wende das Distributivgesetz an.
Schritt 2.2.1.4
Mutltipliziere mit .
Schritt 2.2.2
Addiere und .
Schritt 2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.3.1.2
Faktorisiere aus heraus.
Schritt 2.3.1.3
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.4
Forme den Ausdruck um.
Schritt 2.3.2
Potenziere mit .
Schritt 2.3.3
Potenziere mit .
Schritt 2.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.5
Addiere und .
Schritt 3
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 3.2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 3.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Setze gleich .
Schritt 3.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Schließe die Lösungen aus, die nicht erfüllen.