Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Benutze die Definition des Sinus, um die bekannten Seiten des rechtwinkligen Dreiecks im Einheitskreis zu ermitteln. Der Quadrant bestimmt das Vorzeichen jedes Wertes.
Schritt 2
Berechne die Ankathete des Dreiecks im Einheitskreis. Da die Hypotenuse und die Gegenkathete bekannt sind, kannst du den Satz des Pythagoras anwenden, um die verbleibende Seite zu berechnen.
Schritt 3
Ersetze die bekannten Werte in der Gleichung.
Schritt 4
Schritt 4.1
Kehre das Vorzeichen von um.
Ankathete
Schritt 4.2
Potenziere mit .
Ankathete
Schritt 4.3
Potenziere mit .
Ankathete
Schritt 4.4
Mutltipliziere mit .
Ankathete
Schritt 4.5
Subtrahiere von .
Ankathete
Schritt 4.6
Schreibe als um.
Ankathete
Schritt 4.7
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Ankathete
Schritt 4.8
Mutltipliziere mit .
Ankathete
Ankathete
Schritt 5
Schritt 5.1
Faktorisiere aus heraus.
Schritt 5.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.3
Forme den Ausdruck um.
Schritt 6
Schritt 6.1
Bestimme den Wert von mithilfe der Definition des Kosinus.
Schritt 6.2
Setze die bekannten Werte ein.
Schritt 6.3
Vereinfache den Wert von .
Schritt 6.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 6.3.1.1
Faktorisiere aus heraus.
Schritt 6.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 6.3.1.2.1
Faktorisiere aus heraus.
Schritt 6.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.3.1.2.3
Forme den Ausdruck um.
Schritt 6.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 7
Schritt 7.1
Benutze die Definition des Tangens, um den Wert von zu ermitteln.
Schritt 7.2
Setze die bekannten Werte ein.
Schritt 7.3
Vereinfache den Wert von .
Schritt 7.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 7.3.1.1
Faktorisiere aus heraus.
Schritt 7.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 7.3.1.2.1
Faktorisiere aus heraus.
Schritt 7.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.3.1.2.3
Forme den Ausdruck um.
Schritt 7.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 8
Schritt 8.1
Bestimme den Wert von mithilfe der Definition des Kotangens.
Schritt 8.2
Setze die bekannten Werte ein.
Schritt 8.3
Vereinfache den Wert von .
Schritt 8.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 8.3.1.1
Faktorisiere aus heraus.
Schritt 8.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 8.3.1.2.1
Faktorisiere aus heraus.
Schritt 8.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.3.1.2.3
Forme den Ausdruck um.
Schritt 8.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 9
Schritt 9.1
Bestimme den Wert von mithilfe der Definition des Sekans.
Schritt 9.2
Setze die bekannten Werte ein.
Schritt 9.3
Vereinfache den Wert von .
Schritt 9.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 9.3.1.1
Faktorisiere aus heraus.
Schritt 9.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 9.3.1.2.1
Faktorisiere aus heraus.
Schritt 9.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.3.1.2.3
Forme den Ausdruck um.
Schritt 9.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 10
Schritt 10.1
Bestimme den Wert von mithilfe der Definition des Kosekans.
Schritt 10.2
Setze die bekannten Werte ein.
Schritt 10.3
Kürze den gemeinsamen Teiler von und .
Schritt 10.3.1
Faktorisiere aus heraus.
Schritt 10.3.2
Kürze die gemeinsamen Faktoren.
Schritt 10.3.2.1
Faktorisiere aus heraus.
Schritt 10.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 10.3.2.3
Forme den Ausdruck um.
Schritt 11
Das ist die Lösung zu jedem trigonometrischen Wert.