Elementarmathematik Beispiele

Finde die Nullstellen mithilfe des Lemmas von Gauß x^4-6561
Schritt 1
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 2
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 3
Setze die möglichen Wurzeln eine nach der anderen in das Polynom ein, um die tatsächlichen Wurzeln zu ermitteln. Vereinfache, um zu prüfen, ob der Wert gleich ist, was bedeutet, dass er eine Wurzel ist.
Schritt 4
Vereinfache den Ausdruck. In diesem Fall ist der Ausdruck gleich , folglich ist eine Wurzel des Polynoms.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Potenziere mit .
Schritt 4.2
Subtrahiere von .
Schritt 5
Da eine bekannte Wurzel ist, teile das Polynom durch , um das Quotientenpolynom zu ermitteln. Dieses Polynom kann dann benutzt werden, um die verbleibenden Wurzeln zu finden.
Schritt 6
Als Nächstes bestimme die Wurzeln des verbleibenden Polynoms. Der Grad des Polynoms ist um reduziert worden.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ordne die Zahlen, die den Divisor und den Dividenden darstellen, ähnlich wie in einer Division an.
  
Schritt 6.2
Die erste Zahl im Dividenden wird an die erste Position des Ergebnisbereichs gestellt (unterhalb der horizontalen Linie).
  
Schritt 6.3
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 6.4
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 6.5
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 6.6
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 6.7
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 6.8
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 6.9
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
 
Schritt 6.10
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
 
Schritt 6.11
Alle Zahlen außer der letzten werden Koeffizienten des Quotients der Polynome. Der letzte Wert in der Ergebniszeile ist der Rest.
Schritt 6.12
Vereinfache das Quotientenpolynom.
Schritt 7
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 7.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 8
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 9
Addiere zu beiden Seiten der Gleichung.
Schritt 10
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 11
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Schreibe als um.
Schritt 11.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 12
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 12.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 12.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 13