Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Für jedes existieren vertikale Asymptoten bei , wobei eine Ganzzahl ist. Verwende die Grundperiode für , , um die vertikalen Asymptoten für zu ermitteln. Setze das Innere der Kosekans-Funktion, , für gleich , um zu bestimmen, wo die vertikalen Asymptoten für auftreten.
Schritt 2
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 2.3
Vereinfache beide Seiten der Gleichung.
Schritt 2.3.1
Vereinfache die linke Seite.
Schritt 2.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.1.2
Forme den Ausdruck um.
Schritt 2.3.2
Vereinfache die rechte Seite.
Schritt 2.3.2.1
Kombiniere und .
Schritt 3
Setze das Innere der Kosekansfunktion gleich .
Schritt 4
Schritt 4.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 4.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.3
Kombiniere und .
Schritt 4.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.5
Vereinfache den Zähler.
Schritt 4.1.5.1
Mutltipliziere mit .
Schritt 4.1.5.2
Addiere und .
Schritt 4.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 4.3
Vereinfache beide Seiten der Gleichung.
Schritt 4.3.1
Vereinfache die linke Seite.
Schritt 4.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 4.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.1.1.2
Forme den Ausdruck um.
Schritt 4.3.2
Vereinfache die rechte Seite.
Schritt 4.3.2.1
Multipliziere .
Schritt 4.3.2.1.1
Kombiniere und .
Schritt 4.3.2.1.2
Mutltipliziere mit .
Schritt 5
Die fundamentale Periode für tritt auf bei , wobei und vertikale Asymptoten sind.
Schritt 6
Schritt 6.1
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 6.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.3
Mutltipliziere mit .
Schritt 7
Die vertikalen Asymptoten für treten auf bei , und jedem , wobei eine Ganzzahl ist. Das ist die Hälfte der Periode.
Schritt 8
Der Kosekans hat nur vertikale Asymptoten.
Keine horizontalen Asymptoten
Keine schiefen Asymptoten
Vertikale Asymptoten: , wobei eine Ganzzahl ist
Schritt 9