Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Ermittle, wo der Ausdruck nicht definiert ist.
Schritt 2
Die vertikalen Asymptoten treten in Bereichen einer unendlichen Unstetigkeit auf.
Keine vertikalen Asymptoten
Schritt 3
Betrachte die rationale Funktion , wobei der Grad des Zählers und der Grad des Nenners ist.
1. Wenn , dann ist die x-Achse, , die horizontale Asymptote.
2. Wenn , dann ist die horizontale Asymptote die Gerade .
3. Wenn , dann gibt es keine horizontale Asymptote (es gibt eine schiefe Asymptote).
Schritt 4
Ermittle und .
Schritt 5
Da , gibt es keine horizontale Asymptote.
Keine horizontalen Asymptoten
Schritt 6
Schritt 6.1
Vereinfache den Ausdruck.
Schritt 6.1.1
Kürze den gemeinsamen Teiler von und .
Schritt 6.1.1.1
Faktorisiere aus heraus.
Schritt 6.1.1.2
Kürze die gemeinsamen Faktoren.
Schritt 6.1.1.2.1
Faktorisiere aus heraus.
Schritt 6.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.1.1.2.3
Forme den Ausdruck um.
Schritt 6.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.2
Beginne auszumultiplizieren.
Schritt 6.3
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
- | + | + | + |
Schritt 6.4
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | |||||||||
- | + | + | + |
Schritt 6.5
Multipliziere den neuen Bruchterm mit dem Teiler.
- | |||||||||
- | + | + | + | ||||||
- |
Schritt 6.6
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | |||||||||
- | + | + | + | ||||||
+ |
Schritt 6.7
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | |||||||||
- | + | + | + | ||||||
+ | |||||||||
Schritt 6.8
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
- | |||||||||
- | + | + | + | ||||||
+ | |||||||||
+ |
Schritt 6.9
Da der Rest gleich ist, ist der Quotient das endgültige Ergebnis.
Schritt 6.10
Da aus der Polynomendivision kein polynomialer Teil resultiert, gibt es keine schiefen Asymptoten.
Keine schiefen Asymptoten
Keine schiefen Asymptoten
Schritt 7
Das ist die Menge aller Asymptoten.
Keine vertikalen Asymptoten
Keine horizontalen Asymptoten
Keine schiefen Asymptoten
Schritt 8