Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
; find
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.3
Vereinfache die linke Seite.
Schritt 3.3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.2
Forme den Ausdruck um.
Schritt 3.4
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, erhebe beide Seiten der Gleichung zur dritten Potenz.
Schritt 3.5
Vereinfache jede Seite der Gleichung.
Schritt 3.5.1
Benutze , um als neu zu schreiben.
Schritt 3.5.2
Vereinfache die linke Seite.
Schritt 3.5.2.1
Vereinfache .
Schritt 3.5.2.1.1
Multipliziere die Exponenten in .
Schritt 3.5.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.5.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.5.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.5.2.1.2
Vereinfache.
Schritt 3.5.3
Vereinfache die rechte Seite.
Schritt 3.5.3.1
Vereinfache .
Schritt 3.5.3.1.1
Wende die Produktregel auf an.
Schritt 3.5.3.1.2
Potenziere mit .
Schritt 3.6
Addiere zu beiden Seiten der Gleichung.
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache jeden Term.
Schritt 5.2.3.1
Wende die Produktregel auf an.
Schritt 5.2.3.2
Schreibe als um.
Schritt 5.2.3.2.1
Benutze , um als neu zu schreiben.
Schritt 5.2.3.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.3.2.3
Kombiniere und .
Schritt 5.2.3.2.4
Kürze den gemeinsamen Faktor von .
Schritt 5.2.3.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.2.4.2
Forme den Ausdruck um.
Schritt 5.2.3.2.5
Vereinfache.
Schritt 5.2.3.3
Potenziere mit .
Schritt 5.2.3.4
Kürze den gemeinsamen Faktor von .
Schritt 5.2.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.4.2
Forme den Ausdruck um.
Schritt 5.2.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.2.4.1
Addiere und .
Schritt 5.2.4.2
Addiere und .
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache den Zähler.
Schritt 5.3.3.1
Subtrahiere von .
Schritt 5.3.3.2
Addiere und .
Schritt 5.3.3.3
Schreibe als um.
Schritt 5.3.3.4
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 5.3.4
Kürze den gemeinsamen Faktor von .
Schritt 5.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.2
Dividiere durch .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .