Elementarmathematik Beispiele

Bestimme den Definitionsbereich Quadratwurzel der Quadratwurzel von x+1+1
Schritt 1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 3
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 4.2
Um die Wurzel auf der linken Seite der Ungleichung zu entfernen, quadriere beide Seiten der Ungleichung.
Schritt 4.3
Vereinfache jede Seite der Ungleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Benutze , um als neu zu schreiben.
Schritt 4.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 4.3.2.1.2
Vereinfache.
Schritt 4.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Potenziere mit .
Schritt 4.4
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Ungleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 4.4.2
Subtrahiere von .
Schritt 4.5
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.5.2
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 4.5.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 4.6
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 4.7
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.7.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.7.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 4.7.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 4.7.1.3
Die linke Seite ist nicht gleich der rechten Seite, was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 4.7.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.7.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 4.7.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 4.7.2.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 4.7.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.7.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 4.7.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 4.7.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 4.7.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Wahr
Falsch
Wahr
Wahr
Schritt 4.8
Die Lösung besteht aus allen wahren Intervallen.
oder
Schritt 4.9
Vereine die Intervalle.
Schritt 5
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 6