Elementarmathematik Beispiele

Bestimme den Definitionsbereich Quadratwurzel von 4x^2-12x+9
Schritt 1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Wandle die Ungleichung in eine Gleichung um.
Schritt 2.2
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Schreibe als um.
Schritt 2.2.2
Schreibe als um.
Schritt 2.2.3
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.2.4
Schreibe das Polynom neu.
Schritt 2.2.5
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2.3
Setze gleich .
Schritt 2.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.4.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.1.2
Dividiere durch .
Schritt 2.5
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 2.6
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 2.6.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 2.6.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 2.6.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 2.6.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 2.6.2.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 2.6.3
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Wahr
Wahr
Wahr
Schritt 2.7
Die Lösung besteht aus allen wahren Intervallen.
oder
Schritt 2.8
Vereine die Intervalle.
Alle reellen Zahlen
Alle reellen Zahlen
Schritt 3
Der Definitionsbereich umfasst alle reellen Zahlen.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4