Elementarmathematik Beispiele

Bestimme den Definitionsbereich (b^3-8)/(b^2-9)*(b+3)/(b^2+2b+4)
Schritt 1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Schreibe als um.
Schritt 2.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 4.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 4.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1
Potenziere mit .
Schritt 4.3.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.2.1
Mutltipliziere mit .
Schritt 4.3.1.2.2
Mutltipliziere mit .
Schritt 4.3.1.3
Subtrahiere von .
Schritt 4.3.1.4
Schreibe als um.
Schritt 4.3.1.5
Schreibe als um.
Schritt 4.3.1.6
Schreibe als um.
Schritt 4.3.1.7
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.7.1
Faktorisiere aus heraus.
Schritt 4.3.1.7.2
Schreibe als um.
Schritt 4.3.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 4.3.1.9
Bringe auf die linke Seite von .
Schritt 4.3.2
Mutltipliziere mit .
Schritt 4.3.3
Vereinfache .
Schritt 4.4
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.1
Potenziere mit .
Schritt 4.4.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.2.1
Mutltipliziere mit .
Schritt 4.4.1.2.2
Mutltipliziere mit .
Schritt 4.4.1.3
Subtrahiere von .
Schritt 4.4.1.4
Schreibe als um.
Schritt 4.4.1.5
Schreibe als um.
Schritt 4.4.1.6
Schreibe als um.
Schritt 4.4.1.7
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.7.1
Faktorisiere aus heraus.
Schritt 4.4.1.7.2
Schreibe als um.
Schritt 4.4.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 4.4.1.9
Bringe auf die linke Seite von .
Schritt 4.4.2
Mutltipliziere mit .
Schritt 4.4.3
Vereinfache .
Schritt 4.4.4
Ändere das zu .
Schritt 4.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1.1
Potenziere mit .
Schritt 4.5.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1.2.1
Mutltipliziere mit .
Schritt 4.5.1.2.2
Mutltipliziere mit .
Schritt 4.5.1.3
Subtrahiere von .
Schritt 4.5.1.4
Schreibe als um.
Schritt 4.5.1.5
Schreibe als um.
Schritt 4.5.1.6
Schreibe als um.
Schritt 4.5.1.7
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1.7.1
Faktorisiere aus heraus.
Schritt 4.5.1.7.2
Schreibe als um.
Schritt 4.5.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 4.5.1.9
Bringe auf die linke Seite von .
Schritt 4.5.2
Mutltipliziere mit .
Schritt 4.5.3
Vereinfache .
Schritt 4.5.4
Ändere das zu .
Schritt 4.6
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 5
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 6