Algebravorstufe Beispiele

Dividiere ((64x^3-1)/(2x^2-6x+18))÷((48x^2+12x+3)/(6x^3+162))
Schritt 1
Um durch einen Bruch zu teilen, multipliziere mit seinem Kehrwert.
Schritt 2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Schritt 2.2
Schreibe als um.
Schritt 2.3
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Differenz kubischer Terme, , mit und .
Schritt 2.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Wende die Produktregel auf an.
Schritt 2.4.2
Potenziere mit .
Schritt 2.4.3
Mutltipliziere mit .
Schritt 2.4.4
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Faktorisiere aus heraus.
Schritt 3.2
Faktorisiere aus heraus.
Schritt 3.3
Faktorisiere aus heraus.
Schritt 3.4
Faktorisiere aus heraus.
Schritt 3.5
Faktorisiere aus heraus.
Schritt 4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Faktorisiere aus heraus.
Schritt 4.3
Faktorisiere aus heraus.
Schritt 4.4
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Faktorisiere aus heraus.
Schritt 4.4.2
Faktorisiere aus heraus.
Schritt 4.4.3
Faktorisiere aus heraus.
Schritt 4.4.4
Faktorisiere aus heraus.
Schritt 4.4.5
Faktorisiere aus heraus.
Schritt 4.4.6
Kürze den gemeinsamen Faktor.
Schritt 4.4.7
Forme den Ausdruck um.
Schritt 5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Faktorisiere aus heraus.
Schritt 5.2
Kürze den gemeinsamen Faktor.
Schritt 5.3
Forme den Ausdruck um.
Schritt 6
Mutltipliziere mit .
Schritt 7
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Faktorisiere aus heraus.
Schritt 7.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2
Forme den Ausdruck um.
Schritt 8
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Schreibe als um.
Schritt 8.2
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Summe kubischer Terme, , wobei und .
Schritt 8.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Mutltipliziere mit .
Schritt 8.3.2
Potenziere mit .
Schritt 9
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Kürze den gemeinsamen Faktor.
Schritt 9.2
Dividiere durch .
Schritt 10
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Wende das Distributivgesetz an.
Schritt 10.2
Wende das Distributivgesetz an.
Schritt 10.3
Wende das Distributivgesetz an.
Schritt 11
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1.1.1
Bewege .
Schritt 11.1.1.2
Mutltipliziere mit .
Schritt 11.1.2
Mutltipliziere mit .
Schritt 11.1.3
Schreibe als um.
Schritt 11.1.4
Mutltipliziere mit .
Schritt 11.2
Subtrahiere von .