Algebravorstufe Beispiele

Löse durch Anwendung der Eigenschaft der Quadratwurzel x=((3x)^2)/(4 Quadratwurzel von 3)
Schritt 1
Multipliziere beide Seiten mit .
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Bringe auf die linke Seite von .
Schritt 2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.1.2
Forme den Ausdruck um.
Schritt 2.2.1.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.2.1
Wende die Produktregel auf an.
Schritt 2.2.1.2.2
Potenziere mit .
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2
Faktorisiere aus heraus.
Schritt 3.2.3
Faktorisiere aus heraus.
Schritt 3.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.4
Setze gleich .
Schritt 3.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.5.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.2.2.2.1.2
Dividiere durch .
Schritt 3.5.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: