Algebravorstufe Beispiele

Löse durch Anwendung der Eigenschaft der Quadratwurzel 3(x-6)(2.2x-6)=800
Schritt 1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Teile jeden Ausdruck in durch .
Schritt 1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.1.2
Dividiere durch .
Schritt 1.2.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Wende das Distributivgesetz an.
Schritt 1.2.2.2
Wende das Distributivgesetz an.
Schritt 1.2.2.3
Wende das Distributivgesetz an.
Schritt 1.2.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.2.3.1.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1.2.1
Bewege .
Schritt 1.2.3.1.2.2
Mutltipliziere mit .
Schritt 1.2.3.1.3
Bringe auf die linke Seite von .
Schritt 1.2.3.1.4
Mutltipliziere mit .
Schritt 1.2.3.1.5
Mutltipliziere mit .
Schritt 1.2.3.2
Subtrahiere von .
Schritt 2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.2
Kombiniere und .
Schritt 3.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Mutltipliziere mit .
Schritt 3.4.2
Subtrahiere von .
Schritt 3.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Faktorisiere aus heraus.
Schritt 4.1.3
Faktorisiere aus heraus.
Schritt 4.1.4
Faktorisiere aus heraus.
Schritt 4.1.5
Faktorisiere aus heraus.
Schritt 4.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kombiniere und .
Schritt 4.2.2
Mutltipliziere mit .
Schritt 4.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Dividiere durch .
Schritt 6
Multipliziere mit dem Hauptnenner aus und vereinfache dann.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Wende das Distributivgesetz an.
Schritt 6.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Mutltipliziere mit .
Schritt 6.2.2
Mutltipliziere mit .
Schritt 6.2.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 6.2.3.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.3.3
Forme den Ausdruck um.
Schritt 7
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 8
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Potenziere mit .
Schritt 9.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.2.1
Mutltipliziere mit .
Schritt 9.1.2.2
Mutltipliziere mit .
Schritt 9.1.3
Addiere und .
Schritt 9.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.4.1
Faktorisiere aus heraus.
Schritt 9.1.4.2
Schreibe als um.
Schritt 9.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 9.2
Mutltipliziere mit .
Schritt 9.3
Vereinfache .
Schritt 10
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.1
Potenziere mit .
Schritt 10.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.2.1
Mutltipliziere mit .
Schritt 10.1.2.2
Mutltipliziere mit .
Schritt 10.1.3
Addiere und .
Schritt 10.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.4.1
Faktorisiere aus heraus.
Schritt 10.1.4.2
Schreibe als um.
Schritt 10.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 10.2
Mutltipliziere mit .
Schritt 10.3
Vereinfache .
Schritt 10.4
Ändere das zu .
Schritt 11
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1.1
Potenziere mit .
Schritt 11.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1.2.1
Mutltipliziere mit .
Schritt 11.1.2.2
Mutltipliziere mit .
Schritt 11.1.3
Addiere und .
Schritt 11.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1.4.1
Faktorisiere aus heraus.
Schritt 11.1.4.2
Schreibe als um.
Schritt 11.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 11.2
Mutltipliziere mit .
Schritt 11.3
Vereinfache .
Schritt 11.4
Ändere das zu .
Schritt 12
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 13
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: