Algebravorstufe Beispiele

Löse durch Anwendung der Eigenschaft der Quadratwurzel 3-2x(x-7)=-9
Schritt 1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Wende das Distributivgesetz an.
Schritt 1.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Bewege .
Schritt 1.2.2
Mutltipliziere mit .
Schritt 1.3
Mutltipliziere mit .
Schritt 2
Addiere zu beiden Seiten der Gleichung.
Schritt 3
Addiere und .
Schritt 4
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Faktorisiere aus heraus.
Schritt 4.3
Faktorisiere aus heraus.
Schritt 4.4
Faktorisiere aus heraus.
Schritt 4.5
Faktorisiere aus heraus.
Schritt 5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Dividiere durch .
Schritt 6
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 7
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.1
Potenziere mit .
Schritt 8.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.2.1
Mutltipliziere mit .
Schritt 8.1.2.2
Mutltipliziere mit .
Schritt 8.1.3
Addiere und .
Schritt 8.2
Mutltipliziere mit .
Schritt 9
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Potenziere mit .
Schritt 9.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.2.1
Mutltipliziere mit .
Schritt 9.1.2.2
Mutltipliziere mit .
Schritt 9.1.3
Addiere und .
Schritt 9.2
Mutltipliziere mit .
Schritt 9.3
Ändere das zu .
Schritt 10
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.1
Potenziere mit .
Schritt 10.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.2.1
Mutltipliziere mit .
Schritt 10.1.2.2
Mutltipliziere mit .
Schritt 10.1.3
Addiere und .
Schritt 10.2
Mutltipliziere mit .
Schritt 10.3
Ändere das zu .
Schritt 11
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 12
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: