Algebravorstufe Beispiele

Löse durch Anwendung der Eigenschaft der Quadratwurzel 2-20y^2=17
Schritt 1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Subtrahiere von .
Schritt 2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Faktorisiere aus heraus.
Schritt 2.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.2.3
Forme den Ausdruck um.
Schritt 2.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Schreibe als um.
Schritt 4.1.2
Faktorisiere die perfekte Potenz aus heraus.
Schritt 4.1.3
Faktorisiere die perfekte Potenz aus heraus.
Schritt 4.1.4
Ordne den Bruch um.
Schritt 4.1.5
Schreibe als um.
Schritt 4.2
Ziehe Terme aus der Wurzel heraus.
Schritt 4.3
Kombiniere und .
Schritt 5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.