Algebravorstufe Beispiele

Löse durch Anwendung der Eigenschaft der Quadratwurzel (3x)/(4x-16)-4=1/(2x-8)
Schritt 1
Faktorisiere jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Faktorisiere aus heraus.
Schritt 1.1.3
Faktorisiere aus heraus.
Schritt 1.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Faktorisiere aus heraus.
Schritt 1.2.3
Faktorisiere aus heraus.
Schritt 2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.3
hat Faktoren von und .
Schritt 2.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.5
Da keine Teiler außer und hat.
ist eine Primzahl
Schritt 2.6
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.7
Mutltipliziere mit .
Schritt 2.8
Der Teiler von ist selbst.
occurs time.
Schritt 2.9
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.10
Das kleinste gemeinsame Vielfache einer Reihe von Zahlen ist die kleinste Zahl, von der die Zahlen Teiler sind.
Schritt 3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2.2
Forme den Ausdruck um.
Schritt 3.2.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.3.2
Forme den Ausdruck um.
Schritt 3.2.1.4
Wende das Distributivgesetz an.
Schritt 3.2.1.5
Mutltipliziere mit .
Schritt 3.2.1.6
Wende das Distributivgesetz an.
Schritt 3.2.1.7
Mutltipliziere mit .
Schritt 3.2.1.8
Mutltipliziere mit .
Schritt 3.2.2
Subtrahiere von .
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Faktorisiere aus heraus.
Schritt 3.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.3
Forme den Ausdruck um.
Schritt 3.3.3
Kombiniere und .
Schritt 3.3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.4.2
Forme den Ausdruck um.
Schritt 4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.1.2
Subtrahiere von .
Schritt 4.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Teile jeden Ausdruck in durch .
Schritt 4.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.1.2
Dividiere durch .
Schritt 4.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.