Algebravorstufe Beispiele

Löse durch Anwendung der Eigenschaft der Quadratwurzel (x(x-4))/4=9-x
Schritt 1
Multipliziere beide Seiten mit .
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.1.1.2
Forme den Ausdruck um.
Schritt 2.1.1.2
Wende das Distributivgesetz an.
Schritt 2.1.1.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.3.1
Mutltipliziere mit .
Schritt 2.1.1.3.2
Bringe auf die linke Seite von .
Schritt 2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Wende das Distributivgesetz an.
Schritt 2.2.1.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.2.3
Stelle und um.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Addiere und .
Schritt 3.1.2.2
Addiere und .
Schritt 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 3.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Schreibe als um.
Schritt 3.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.